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Abstract

Over the last two decades, we have seen an increasing applications for simultaneous
localization and mapping (SLAM) systems, predominantly in the field of autonomous
driving, piloting unmanned aerial vehicle, geographical mapping and lately in augmented
reality systems. The accurate localization and spatial understanding of the physical
environment is a common factor in all of these applications. To support these applications
visual SLAM system relies upon the fusion of multiple sensor inputs, like - camera, Light
Detection and Ranging (LiDAR), inertial measurement unit (IMU), Global Navigation
Satellite System (GNSS), etc.

In this project, we investigate the fusion of Global Navigation Satellite System (GNSS)
measurements into the visual SLAM (VSLAM) system, to achieve accurate localization
of the camera on a geographical scale. The state-of-the-art monocular VSLAM system
can be used to very accurately determine the rigid-body motion of the camera. However,
such systems suffer from scale ambiguity and drifts among several other issues. By
combining themeasurement frommultiple sensors, we can overcome these shortcomings
to achieve large scale and robust localization of the system. This project proposes a
tightly coupled GNSS-VSLAM system that fuses the GNSS measurement in the graph-
based global bundle adjustment to remove the scale ambiguity of the monocular SLAM
and correct the noisy GNSS measurements. The geo-referenced positioning of the
camera and the estimation of attitude in this manner eliminates the need for global
sensors like - magnetometer and gyroscope, which are very noisy and highly susceptible
to environmental disturbances.

The proposed GNSS-VSLAM system results in smooth camera trajectory compared
to noisy standard GPS measurement and better map scale compared to monocular
VSLAM system. However, it lacks the robustness and tracking stability required to
support real-time applications, such as - outdoor Augmented Reality, navigation, etc. It is
mainly due to the high variance and low-frequency updates of the RAW GNSS data. The
system can be further improved by fusing with high-frequency inertial measurements or
adopting a different re-localization based approaches.
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1. INTRODUCTION

Augmented Reality (AR) has come a long way, from early AR display system developed
in 1968 by Ivan Sutherland [1] which takes up the entire room space, to the current state
of the art mobile AR systems (ARCore and ARKit) which fits conveniently into the users
pocket. The latest mobile AR systems include features such as - real-time depth maps,
body tracking, physically based rendering (occlusion, shadows and lighting), scene
understanding, etc. These systems are actively being adopted for mainstream
applications, like - medical training, retail shopping, interactive data visualization,
entertainment applications etc.

The use of augmented reality for indoor application is highly explored, however lesser
work has been done for the outdoor applications. It is mainly because the mapping of
the static indoor environment is relatively easy and deterministic compared to an outdoor
location. The mapping of large-scale physical environment and maintaining a consistent
map for user localization for a longer period is a highly challenging problem. However, with
the development of computer vision algorithms and optimized sensor fusion strategies
along with the growing computational power, it has become an achievable task. The
large-scale outdoor tracking for AR will open up new possibilities for users. For example,
in tourism, an augmented reality application can be used to create a virtual guided tour
of any physical place of attraction. It can also be used for smart navigation systems or
linked to a digital twin of the city (smart-city projects) for interactive experiences.

Themotivation for this research is derived frommy project work onmixed reality-based
platform for collaboration in geo-referenced environment. The collaboration platform
supports user on both the augmented reality (AR) and virtual reality (VR) systems by
using a GPS-based (Global Position System) based coordinate system defined above
the local euclidean coordinate system. The GPS world coordinate system allows to
localize the outdoor AR user on a real-world geographical coordinate system, which
can be used for a range of real-world applications. On the VR platform, the user can
virtually experience the digital twin of the real world with an additional layer of interactive
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contents representing the shared space (including user avatars, 3D models, videos, etc.).
The application supports real-time collaboration between users across the platform by
connecting the two different spaces, which allows the user to share their experience with
remote users in a seamless way.

This collaboration platform provided a novel method of interaction between users
using mixed reality technologies. It successfully demonstrates basic collaboration
between users, including features such as - voice conferencing, using Avatar to
represent users, action synchronization, freehand drawing in virtual 3D space and virtual
content placement at run-time. However, the state of the art AR systems are not ideal
for outdoor experiences [2][3] and pose multiple issues like - mapping of a dynamic
environment, inconsistent global brightness (due to environmental factors), the scale of
the environment etc. These issues became the challenges for the platform and resulted
in limited robustness and use cases.

This research project is motivated from these limitations and investigate the possibility
of geo-referenced localization for the outdoor AR user on a global scale with a few
centimetres level of accuracy. There have been several attempts to address the problem
of large-scale outdoor tracking for AR, however without having much success. The
previous solutions/literature can not be either generalized or requires complex and costly
instruments for the process, as we will see in more details in the background chapter. In
this project, we use a simplemonocular camera for vision-based simultaneous localization
and mapping (SLAM) and geographical navigation satellite system (GNSS) sensor for
global positioning and tracking of the user in an outdoor environment. Usually, both of
these two sensors are available on a consumer mobile phone, as such the proposed
solution can be easily extended for the mobile platform as well.

The main objective of this project is to develop a generalized framework for the
integration of GNSS measurements into the visual SLAM (VSLAM) system to achieve
the geo-referenced positioning and attitude for the sensor system. There exist multiple
solutions for the integration of GNSSmeasurements and inertial data into VSLAM systems
using either filtering-based or graph-based approach. But to my knowledge, there’s
no research on using just the GNSS measurement in graph-based bundle adjustment
process of visual SLAM. In this report, we will understand how to approach the integration
of global sensor measurements into visual SLAM bundle adjustment and what are the
challenges to achieve geo-referenced position and attitude of the user. Other contribution
of this project includes - estimation of map scale from GNSS measurement to overcome
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the scale ambiguity issue of monocular VSLAM and approaches for estimating the
transformation between different coordinate systems.

This project is the preliminary work, performed as the starting point for further research
on the topic of geo-reference AR system. Along with this report, complete source code
and software builds used in the project are uploaded on Github (Please refer to the
appendix for code listings and user manual). In the next chapter, we will cover the
general theory and previous works related to this research. Next, the analysis and design
chapter introduces the GNSS-VSLAM systems’ architecture and dependencies, along
with the decisions made to limit the scope of this project. The implementation chapter
provides the problem formulation and its solution used in the project. Finally, the testing
and results of the system are documented in the following chapters, and the remaining
technical challenges are discussed.
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2. BACKGROUND

In this chapter, we will start with understanding visual SLAM and global positioning
system, used for localizing the user on local and a global scale respectively. Next, we
will cover the relevant research and previous works related to this project.

I. VISUAL SIMULTANEOUS LOCALIZATION AND MAPPING (VSLAM)

The problem of localizing the robot (system of sensors) is a traditional topic in the field
of robotics and is a well-studied problem in computer vision. There has been decades
of work on the implementation of localization of robot and mapping of the physical
environment using a single or a set of sensors. Generally, this problem is referred to
as the simultaneous localization and mapping (SLAM) or structure from motion (SFM).
Different kinds of visual and ranging sensors such as - monocular or stereo cameras,
Light Detection and Ranging (LiDAR), Sound Navigation and Ranging (SONAR) etc. are
used to perform the mapping of the environment. The sensors can detect interesting
features in the image/frame (keypoints) or measure the time of flight to determine the
three-dimensional position of a point in the physical world (map-point). The collection
of such map-points will eventually grow into a big set of points in 3D space (these 3D
points are also called the point cloud).

In Visual simultaneous localization and mapping (VSLAM) method, the robot
simultaneously performs the task of mapping the environment and self-localization using
vision-based sensors (i.e. cameras). Multiple visual sensors can be arranged in different
configuration like - monocular, stereoscope, 360 degrees, etc. This problem of
simultaneous mapping and localization is referred by different names in different
disciplines, like - Visual Odometry, Photogrammetry, Multi-view reconstruction, Structure
from motion etc. However, there is a slight difference between these methods. For
example, in Photogrammetry the reconstruction of the 3D structure is achieved from an
unordered set of images using frame-to-frame continuity. It is targeted for offline usage
and processes images captured from an uncalibrated camera as well. Visual odometry

8



is used in problems where the retrieval of robot position is more important than
generating a detailed 3D map of the environment. There is no distinct separation
between the use of these terminologies, but the common factor is that they all perform
the task of simultaneous localization and mapping (SLAM).

To better understand the process, let’s take a close look into the process of VSLAM.
We will understand how the 3D map point positions and camera poses are estimated
from a sequence of images, and what are the requirement and challenges at every step
of the process.

Figure 2.1: The simultaneous estimate of both robot (i.e. camera) and landmarklocations is required. The true locations are never known or measureddirectly. Observations are made between true robot and landmark locations.Credits: [4]

Consider a rigid-body setup where a calibrated camera (i.e. robot) is moving through
an environment. The starting point of the camera is fixed, as the point of reference (i.e.
origin) for the SLAM world. The virtual coordinate system for the camera is defined as
per the left-hand rule, where x and y axes lie in the camera’s image plane, and the z-axis
is orthogonal to this plane, pointing in the outwards direction. Figure 2.1, shows the
moving camera about the static points capturing N keyframes. The keyframe is defined
for a set of image frames capturing at leastM point features taken from distinct views
of the scene. Each keyframe has a corresponding reference frame, which is aligned
with the camera frame at the time instant when the image was captured. At any time
instant k, the following quantities are defined: uk the state vector describing the location
and orientation of the camera; Xki the vector describing the location of the ith landmark

9



whose true location is assumed to be time-invariant; xki the 2D observation taken from
camera image for the location of ith landmark at time k.

The visual SLAM is an inverse graphics problem compared to computer graphics,
where we deal with the task of rasterizing a given 3D models and camera configuration
into a 2D image. Consider a 3D world point X expressed in homogeneous form

X = [X Y Z W ]T (2.1)

and a 2D image point x,
x = [x y d]T (2.2)

where d is for the depth of the pixel (x,y). In computer graphics, the projection of 3D
point onto the 2D screen is given by

λx = PX,

P = Mprojection ∗Mview ∗Mmodel

(2.3)

here λ is the inverse depth of the 3D point and P is a 3x4 projection camera matrix.
It is important to note that, here we assume the image is free from any type of lens or
geometric distortions. In the case of the inverse graphics, the projection matrix P is
defined as follows

P = K[R|t],

K =


αfx s cx

0 αfy cy

0 0 1

 (2.4)

here K is the matrix comprising of camera intrinsic parameters, containing - focal
length f , camera optical center c, and skew factor s. R and t are the corresponding
rotation and translation of camera referred to as the extrinsic parameters. The matrix
K can be determined from the calibration process of the camera. The common way of
calibration is by using a known pattern of image (like a checkerboard or an asymmetric
circle pattern). For a stable VSLAM, it is very necessary to obtain the precise intrinsic
camera parameters for matrix and distortion coefficients for camera lenses. The OpenCV
library used in this project provides in-built methods for the calibration of the camera.
However, to use a custom image resolution for VSLAM, we will need to determine new
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camera parameters and distortion coefficients. Thus I have created c++ executable to
calibrate the camera with custom width and height, and save the parameters into a YAML
file (Check appendix for usage).

The point to point correspondences between image frames is required to estimate
the camera trajectory from a sequence of images. With the help of epipolar geometry,
we can determine the extrinsic parameters of the camera (i.e. rotation and translation)
between image pairs. The estimation of the point to point correspondences between
image pair is a key step in the VSLAM process. However, in an average image resolution
of 640x480, there are 0.3 M pixel points. Due to limited computation power, we can not
estimate the correspondences for every pixel in the image and thus, we try to select a
few key points and respective key descriptors in every frame. For general use, we can
limit the size of keypoints to 2000 for any single frame, which is the value used in [5].
There are several feature-based methods for the detection and matching of keypoints,
like - FAST (Features from Accelerated Segment Test), SIFT (Scale Invariant Feature
Transform), SURF (Speeded-Up Robust Features); ORB: Oriented FAST and Rotated
BRIEF (Binary Robust Independent Elementary Features), etc.

SIFT uses the maxima from a difference-of-Gaussian (DOG) pyramid as features,
which makes it robust for varying scale conditions. To make SIFT rotation-invariant, the
keypoint descriptor can be rotated to fit the orientation. In case of SURF, the DOG is
replaced with a Hessian matrix-based blob detector. SURF computes for the sums of
gradient components and the sums of their absolute values. SURF is computationally
faster than SIFT but comes with a drawback of lesser accuracy in tracking feature. The
advantage of using FAST corner detection is its computational efficiency which makes it
very suitable for real-time applications.

The OpenVSLAM used in this project uses ORB-feature detection [6] for point
correspondences and matching. ORB method uses binary features that are invariant to
rotation and scale (up to a limit), resulting in a fast recognition of feature points with
good invariance to camera viewpoint. Raul Mur-Artal et al. showed the superior
performance of ORB for place recognition in [7].

The feature-based method extracts the corner points from the image using the high
change in intensity along the x and y direction of the image. The image gradient (∇I)
is defined in terms of its partial derivative in x and y direction and is represented as
following

∇I =
[
Ix Iy

]T (2.5)
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The partial derivative Ix and Iy are calculated by the convolution of the source image I
by the partial Gaussian kernel Gσx and Gσy respectively. Then we define matrixMI as
follows

MI = ∇I∇IT =

 I2
x IxIy

IxIy I2
y

 (2.6)

The eigenvalues ofMI , λ1 and λ2 can define the type of feature for the region. If both
λ1 and λ2 are large positive value then there’s a corner; if either one is large and the
other is very small (≈ 0) then the point lies on the edge, and if both the values are very
small then point lies in a flat region of constant intensity. The reason for using the distinct
feature is to enable the tracking of unique image region across images to solve the
correspondence problem.

The advantage of using a feature-based tracking and matching is that it can handle
large baseline cases during tacking and the relocalisation is possible in case of losing
track, unlike the optical flow-based methods. Now the geometric constraints can be
established for a pair of images taken from either different cameras (i.e. stereo) or
single-camera (i.e. monocular). However, when the motion between the two images
is not known, the epipolar geometry is undetermined. Without the known inter-camera
distance, the scale of locally constructed map portions and the corresponding motion
estimates is liable to global drift over time [8].

Figure 2.2: A point x in one image is transferred via the plane π to a matching point x’ inthe second image. The epipolar line through x’ is obtained by joining x’ tothe epipole e’. Credits: [9]

Figure 2.2, shows the typical epipolar geometry for a two-view scenario. The 3D point,
X is lying on a plane π in the space and x and x′ are the pre-image of point X in left and
right image respectively. Since X lies on a ray corresponding to x, the projected point x′
must lie on the epipolar line l′ corresponding to the image of this ray. The point e and
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e′ are the corresponding epipoles of left and right image respectively, determined from
the point of intersection between the image plane and a line connecting the two camera
centres. The left and right image are connected by some rigid-body transformation of
rotation R and translation T . Then by the principals of epipolar geometry, we have the
following constraints

x′T̂Rx = 0 (2.7)

where T̂ is the skew symmetric matrix of size 3x3. This constraint (equation 2.7) is
also known as epipolar constraint, which is derived from the triple product of ~oX, ~o′o, ~o′X
(complete derivation of this can be found in [9]). The matrix product of T̂ and R is also
generally referred to as the essential matrix (E = T̂R) belonging to the essential space
defined as

ε ≡ { T̂R | R ∈ SO(3), T ∈ IR3 } ⊂ IR3x3 (2.8)
The camera motion belongs to rigid-body motion SE(3) group and has 6 degrees of

freedom (3 for translation and 3 for rotation). Given enough point to point
correspondences between image pairs, the essential matrix can be obtained by
standard 8-point algorithm [9]. The same concept can be generalized for an
uncalibrated camera as well by using the Fundamental matrix as follows

x′TFx = 0,

E = KTFK
(2.9)

It is important to note that in a real-world application the image data will include random
noise and unexpected structures and repeating patterns. This degrades the estimation
and will result in outliers, which needs to be filtered out to improve the robustness of the
algorithm. A common outlier rejection algorithm such as Random Sample Consensus
(RANSAC) [10], can be used to improve the efficiency. Even after the rejection of outliers,
the small calculation errors will get accumulated over time and will throw the camera
off-trajectory and result in an incorrect map point locations. The bundle adjustment (BA)
methods are used to minimize the cost function of the graph and improve the tracking of
the system. It was originally conceived for photogrammetry in the 1950s and then later
widely adopted in computer vision tasks. The BA algorithm is used to jointly process
the 3D pose of the camera and map points to optimize the reprojection cost function
(equation 2.11) that best predict the location of the observed points.
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E(R, T,X1, ..., XN ) =
N∑
j=1

|x̃j
1 − π(Xj)|+ |x̃j

2 − π(R, T,Xj)|2 (2.10)

where x̃j
1 and x̃j

2 are the observed corresponding point in image first and second
respectively. The function π is the reprojection of 3D map pointXj on the image plane
and π(R, T,Xj) denotes the perspective projection after rotation and translation. For a
general case of m images, we have

E({Ri, Ti}i=1...m, {Xj}j=1..N ) =

m∑
i=1

N∑
j=1

θij |x̃j
i − π(Ri, Ti,Xj)|2 (2.11)

with T1 = 0 and R1 = I; θij = 1 if point j is visible in the image i, else θij = 0.

It is often that corner features between images are incorrectly matched, which can
affect the robustness of the system. Raul Mur-Artal et al. in ORB-SLAM [11] proposed a
parallel computation model to estimate the relative pose between two frames using
RANSAC (Random Sample Consensus) approach. RANSAC is used to solve the
location determination problem (LDP), where the objective is to determine the points in
space that project onto an image into a set of landmarks with known locations [12].
Generally, the BA is used as the last step in the reconstruction pipeline, because the
optimization of the pose graph is a highly non-convex problem that requires a good
initialization. The minimization of non-convex cost function is a challenging problem and
are typically solved by iterative non-linear least-squares algorithms, such as -
Levenberg-Marquardt or Gauss-Newton algorithms.

II. GEOGRAPHICAL NAVIGATION SATELLITE SYSTEM (GNSS)

Global Navigation Satellite System (GNSS) is a generic term that refers to any global
satellite-based system which can pinpoint the geographical location of a user anywhere
on the surface of the Earth. Localizing oneself on the surface of the earth is crucial for
many practical applications, like - navigation, mapping, surveying, defence, etc. The
GPS technology was developed by the U.S. Department of Defense in 1973 and opened
for public use a few years later. Still, it wasn’t until 1995 that the system was able to
reach a fully functional state. The GPS consists of up to 32 medium Earth orbit satellites
in six different orbital planes, with the exact number of satellites varying as older satellites
are decommissioned and replaced. It works by receiving radio signals from satellite
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containing the ephemeris data, which is used to estimate the position of the receiver. As
of July 2020, there exist six different satellite constellations - the United States’ Global
Positioning System (GPS), Russia’s Global Navigation Satellite System (GLONASS)
and China’s BeiDou Navigation Satellite System (BDS) are fully operational, with the
European Union’s Galileo, Japan’s Quasi-Zenith Satellite System (QZSS) and India’s
Indian Regional Navigation Satellite System (IRNSS) in partial operation and different
dates for becoming fully operational systems. If the GNSS receivers supports multiple
constellations, it may be possible to improve the positioning in terms of accuracy and
speed due to more satellites being available. The accuracy of measurement can typically
vary from few tens of meters (in case of normal GPS) to few centimetres (in case of
Differential GPS) for real-time systems [13].

The receiver’s location is calculated from the distance measurements (pseudo-range)
between the receiving antenna and the position of geosynchronous satellites in orbit.
Instead of triangulation, we use trilateration (measuring distances, see figure 2.3) which
requires at least three satellites to estimate the position. However, in a practical situation,
these measurements are always noisy, and we need at least four satellites to be able to
accurately determine the receiver’s position. As the radio signals travel from satellite,
it is prone to many sources of errors, like - ionospheric delay, time relativity, clock
bias, multipath reflections, etc. which needs to be taken into account. For a precise
measurement of the position, we need to model all these sources of errors and apply it
to pseudo-range measurements at the receivers end, which evaluates the satellite signal
and processes the ephemeris data, subsequently.

Figure 2.3: Intersecting sphere in trilateration of position. Image credits: [14]
For a code-based pseudorange (PRc) we have the following (non-linear) equation
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(2.12) taking into account the satellite clock bias (dtS), the delay caused by the ionosphere
(dion), the delay caused by the troposphere (dtrop) and the receiver noise (ε).

PRc = ρ+ δtR − δtS + dion + dtrop + ε (2.12)
The above equation is non-linear, because of the geometric distance (ρ) between the

receiver and the satellite. Since we have the approximated position of the receiver
(X0Y0Z0), we can linearize it from the first-order Taylor series expansion. This
pseudorange (PR) information is required by the PVT solution, which provides the user’s
position and time anywhere on the globe.

The PVT estimators are algorithms which take as input satellite positions and pseudo-
range to those satellites and aim to estimate the receiver’s Position, Velocity and Time
(PVT). In some cases, we can use the signal characteristics to improve the estimation of
the receiver’s velocity (e.g. using Doppler measurements), thus increasing the accuracy
of the position estimations. Additionally to the position related parameters, we also need
to estimate the receiver clock bias with respect to a certain GNSS time frame. This is
handled by having the clock bias as one of the parameters to be estimated alongside
with the position and velocity.

Figure 2.4: Sources of GNSS pseudorange measurement errors in an open area.There would be additional reflection and refraction errors in urbanenvironments. Credits: [14]

The satellite signal is subject to various sources of error before it reaches the receiver
(see figure 2.4). These error sources degrade the signal, resulting in poor accuracy of
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the pseudorange and position estimate. The errors can be systematic in that the error
resulting from these sources are more or less a constant bias and the effect persists over
a longer period of time, or they can be random sources of error, contributing to signal
noise and changing rapidly. Various methods and models are used to mitigate these
effects, to a varying degree of success depending on their environment.

• Multipath errors: The environment factors such as buildings, mountains, or dense
foliage at the receivers’ end might reflect or diffract the incoming signal. This
type of errors are called multipath errors and is very common to experience in an
urban area or tropical forests. There are different methods to reduce or detect the
multipath errors. One of the ways is to use antennas that only record incoming
signals from where they are expected to arrive, mainly from the sky at angles near
or above the horizon, and not from below.

• Geometric Dilution of Precision (GDOP): The geometry of how the satellites are
arranged in their orbits relative to the receiver has an effect on the position estimate
on the Earths surface. Satellites clustered together in space will yield nearly same
pseudorange estimates and will not provide necessary precision. Increasing the
number of satellites in sensors view can improve the GDOP value, either by using
more than the four required satellites to solve the position equations or allow the
receiver to select a more favourable subset of the satellites.

• Ephemeris errors: The satellites are affected by solar radiation and the
gravitational pull of the sun and the moon, gradually altering their orbits. These
changes are continually observed by the monitoring stations on Earth and any
model-based corrections of the orbit is updated to the satellites ephemeris data.
However, the average pseudorange error due to ephemeris prediction error is 0.8
meters for real-time operations.

• Atmospheric errors: Environmental factors like the refraction index or airmass of
the medium, that the signal must pass through effects the speed of the satellite
signal. The amount of airmass is greater for satellites nearer the horizon relative to
the receiver, compared to satellites at larger angles. Provided a rough position of
the receiver and some meteorological parameters, this error can be modelled and
largely compensated for in the pseudorange estimation.

• Satellite clock errors: Even though the atomic clocks onboard the satellite is
extremely accurate, but due to small drifts and relativistic time effects, it needs
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to be accounted and modelled for the estimation. The residual clock error after
correction at the receiver ranges from 0.3-4 meters depending on satellite and time
since the last clock drift update.

The precision of the GNSS receiver will also vary depending upon their build type
and cost. Some of the high-end receivers such as - Trimble AgGPS 332 or iNAT
receivers can be accurate up to centimetre level of accuracy, while the low-cost GNSS
receivers such as those installed onboard mobile devices can vary somewhere in the
range between 4.9 m to 100 m [14]. It is not necessary that the GNSS receiver will
support all the active satellite constellations. Like in this project, my Android GNSS
receiver supports only GPS and Galileo constellation of satellites. This may affect the
coverage or the availability of service in some locations.

III. OUTDOOR AUGMENTED REALITY

Since the time augmented reality was first conceptualized by Wellner et al. in 1993 [15],
there has been tremendous development in the field over the last three decades. This
progress has led to the development of multiple user-friendly AR systems like - mixed
reality-based head-mounted displays (for example - Microsoft Hololens, Magic leap,
etc.) and smart wearable technologies (like - Google Glass, Vuzix blade, etc.). Despite
the progress, the field of augmented reality still struggles with technical challenges for
making a compelling use case for any real-time outdoor applications. Some of the
main challenges for AR pointed out by DWF Van Krevelen and R Poelman in [16] are
- Portability and outdoor use; Tracking and (auto)calibration; Display fidelity; Depth
perception, etc. The tracking of an AR system in an unprepared environment remains
a challenge. The mobile AR devices have a limited amount of visual and tracking with
limited computational power, which are unsuited for real-time outdoor applications. Mobile
AR systems for large scale outdoor environment still remains an open challenge and an
area of active research. In this research, we will restrict the scope to the outdoor tracking
with geo-referenced tracking systems only.

Feiner et al. developed one of the earliest geo-referenced AR system, it was
developed in 1997 at Columbia University to aid tourists in exploring urban
environments [17]. Their AR system comprised of a backpack with a computer, a GPS
receiver, a pair of see-through goggles for the display with an inbuilt IMU sensor, and a
hand-held 2D pad with stylus for interacting with the system. The systems display the
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information about the points of interest, by overlaying the text labels on the see-through
glasses. The text labels are positioned corresponding to the geo-location and aid the
user in navigating to these locations. Another AR system similar to this was created and
tested by Behzadan et al. [18][19] at the University of Michigan for the visualization of
the construction work-flow. Initially, the AR system used a standard positioning service
(SPS) coupled with only a gyroscope for the attitude solution but later was upgraded
with differential GPS (Trimble AgGPS 332 Receiver) and a full inertial navigation system
(INS). Although these papers provide designs for setting up an outdoor AR system, but
requires a lot of costly hardware equipment and doesn’t provide quantitative analysis or
the performance results of the system. Most of this can now be substituted with mobile
computing resources and advanced localization algorithms.

Roberts et al. at the University of Nottingham, developed a mobile AR system for the
visualization of subsurface and under-ground structure such as - cables, pipes, and
other utility lines [20][21]. The proposed solution uses kinematic GPS (RTK GPS) and
INS data for precise localization and orientation of the AR system. The paper claims to
achieve centimetre level precision, however, no details of the implementation or test
results have been provided or accessible at the time of this writing. Also, the hardware
requirement of their system is similar to the ones used by Feiner et al. and Behzadan et
al. and it strictly depends upon the GNSS measurements, which means it can not be
used in GPS denied conditions. The stability of the solution is also questionable for long
period usage and user dynamics are not clear from the report.

IV. VSLAM SYSTEMS

The concept of SLAM was first proposed by Randall et al. in 1986 [22]. In the early years,
filtering-based approaches were popular and used to process visual measurements.
For example, Davison et al. proposed MonoSLAM in 2003 [23], in which an extended
Kalman filter (EKF) was used to filter the camera pose and 3D map points (MPs). It
was the first real-time monocular SLAM system, which was seminal in the formulation
of the problem and basis for much of the later research. After that, G. Klein and D.
Murray presented Parallel Tracking and Mapping (PTAM) in 2009 [24]. PTAM used
a two threaded system for parallelizing the task of mapping and tracking in different
threads for estimating the ego-motion of the handheld camera in real-time. For the
optimization of camera poses and map points, the PTAM used the bundle adjustment
approach after being inspired by its success in structure from motion (SFM) and visual
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odometry problems. The bundle adjustment optimizes the camera poses and 3D map
point positions jointly by minimizing the reprojection error function. The standardization
of SLAM problems and concepts like keyframe structure and optimization using bundle
adjustment led to the further development in the field resulting in the current state of the
art VSLAM systems, such as ORB-SLAM [11], Direct Sparse Odometry [25], LSD-SLAM
[26].

For the global positioning of the AR system, a majority of the previous work is
focused on the integration of global sensor devices with the vision-based systems for
navigation. These visual navigation systems can be broadly categorized under two
categories of - filtering based methods [27][28] and graph-based methods [29][30][31].
While both the approaches are capable of optimizing the localization and mapping
problem, the graph-based approach is considered to be superior [32]. The sliding
window approach of graph-based method allows it to easily integrate outdated
measurements and perform delayed data association, and optionally output lagged
pose estimation. Experimentally as well, the graph-based localization gives higher
accuracy compared to particle-based methods. This motivates our approach of using
the graph-based optimization strategy for the pose-graph problem and fusion of GNSS
measurement.

The state of the art AR API (Application Programming Interface) frameworks, such
as - Google ARCore, Apple ARKit, and Microsoft Hololens are available for mobile AR
systems. However, they all have limitation of localization in a large scale environment.
Tobias Feigl et al. in [33] concludes that the SLAM techniques of these AR systems are
a showstopper for an area of as small as 1600m2 or straight distance of 120m. Tobias
Feigl et al. points out two typical problems of these AR systems: (a) They tend to crash
when a user moves while a surrounding object, e.g., a vehicle, synchronously moving
with the camera. (b) There are system instabilities when workers randomly enter or leave
the field of view of the AR system and temporarily occlude known features (as the system
can hardly distinguish between self-motion and feature motion). The study shows that
AR systems accumulate a linear scaling error of 6.65cm per meter, on average. The best
system only yields the mean absolute error of 17.28m per 120m of distance and scaling
error of up to 14.4cm per meter, which is clearly too much for a stable AR experience.
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V. GEO-REFERENCED VSLAM SYSTEMS

Daniel Kiss-Illes et al. [34] proposed a GPS-SLAM system that combines both the GPS
and IMU measurements to estimate the relative sensor poses to be used in ORB-SLAM
[11]. The GPS-SLAM system implements a constant velocity model to estimate the
relative camera position and augments the existing camera poses in the local map to
improve the tracking. This resulted in fewer lost frames and a denser map reconstruction.
However, it also resulted in poor tracking in case of a larger rotation and used a combined
GNSS-IMU measurement to estimate new camera poses for correction.

Most of the fusion of GPS/GNSS based inertial navigation system involves the
integration of IMU data with the visual SLAM. This is mainly due to the high-frequency
input of the IMU data which can match the high frame rate of the visual sensors. The
IMU data provides relatively higher measurement accuracy compared to RAW GNSS
measurements over a shorter period. While some have even suggested the coupled
visual SLAM and inertial navigation as an alternative to GPS based navigation [35]. In our
case, we want to avoid the processing of IMU and use the RAW GNSS measurements
only for a tightly coupled with visual SLAM system.

Xiao Chen et al. proposed a tightly coupled system of low-cost GNSS and monocular
camera for global localization of the sensor [36]. Their proposed system GNSS-Visual-
ORB-SLAM (GVORB) works by the data fusion into SLAM graph-based optimization
instead of a filter-based approach. In original ORB-SLAM [11], it has three processing
threads for - tracking, local mapping and loop closing. In addition to these threads,
GVORB system uses two additional threads for big local bundle adjustment (BLBA) and
global bundle adjustment (GBA). The BLBA is used to integrate GNSS measurement
into local bundle adjustment optimization and GBA is used to optimize the keyframe
poses and map points with all the GNSS measurement and visual observations. The
GVORB system has an average positioning error of approx. 5 meters for 2 minutes of an
online system. Although their work seems promising on the surface, the paper doesn’t
properly explain the characteristics of new systems and the testing results are calculated
from a synthetic GNSS data with random generated Gaussian noise.

Tong Qin et al. in [37] presents a more general approach for fusing multiple sensor
data into visual SLAM process. The paper proposes an integration framework for the
fusion of global sensors (i.e. GPS, magnetometer and barometer) and local sensors (i.e.
camera, IMU and LiDAR) measurements in a pose graph optimization step of the SLAM
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process. The different properties of global and the local sensors help in overcoming
the shortcomings of other sensor measurements, which helps in creating a more robust
localization and mapping system. Their localization results are impressive and better
than ORB-SLAM on the publicly available dataset of KITTI sequence [38]. However, we
can not directly use their approach as it relies upon multiple sensor inputs, and the pose
graph optimization with just the GNSS measurement wouldn’t be sufficient for global
convergence of the system.

Our approach of GNSS fusion in this project is largely based on the framework
proposed by Tong Qin et al. in [37]. Along with the updated global bundle adjustment for
the GNSS fused pose graph, this project presents a strategy for estimating map scale for
monocular VSLAM. Further, we propose methods for the alignment of GNSS and VSLAM
coordinate systems and scaling of the global map without the loop closure detection.
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3. ANALYSIS AND DESIGN

From the background research, it became clear that there doesn’t exist any
solution/research that allows for stable geo-referenced localization in real-time which is
suitable to create an augmented reality experience, more so to create a collaborative
experience between AR and VR platform. Thus, this research may be considered as the
beginning step to combine the state of the art systems from the field of robotics and
sensor fusion, to create a consistent platform that accurately tracks the user on
geo-referenced scale and support heterogeneous platforms. Given the ambitious
objective of the research and some preliminary proof of concepts of the platform, I had
to limit the scope of this project and still have a meaningful contribution towards the
larger objective.

Due to the nature of the research and time constraints, I have focused primarily on
the objective of tracking and localization of the camera using visual SLAM and GNSS
measurement. Although this project does not directly implement any augmented reality
system, the selection of tools and libraries are strictly in line with the development of
the larger system. Similarly, the approach of tightly coupled GNSS and visual SLAM is
to optimize the computation cost and save on performance to be compatible with the
mobile devices. For the same reason of performance, the integration of any inertial
measurement data is not considered.

The geo-referenced position of the system is obtained by the processing of satellite’s
ephemeris data by the GNSS receiver. For the processing of ephemeris data, we
are using the open-source project called GNSS compare [39], which was developed
as part of the European Space Agency (ESA) competition called Galileo Smartphone
App Challenge. The satellites’ ephemeris data contains - Eccentricity; Semimajor axis;
Inclination; Longitude of the ascending node; Argument of periapsis; and True anomaly.
The android application currently supports Galileo and GPS satellite constellations for the
estimation of Position, Velocity and Time (PVT) of the system. It then estimates following
GNSS measurements - timestamp; latitude; longitude; altitude; speed; accuracy; the
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number of visible satellites; multipath indicator; accumulated delta range uncertainty in
meters; and type of constellation. The position updates, speed and range uncertainty
measurements are shared with the VSLAM system over a TCP-based connection.

There are many formats for representing geographical coordinate system and
geodetic datum for defining the position of the system. For the input and output
coordinates, I have used WGS-84 standard [40], as specified by the United States
Department of Defence. This coordinate system is most commonly used in the
satellite-based navigation, geodesy and cartography including GPS. Although global,
this coordinate system is not suitable for directly integrating in visual SLAM system. The
VSLAM world is a Euclidean coordinate system with orthogonal basis vectors
representing a flat/planar world. Thus, normally the GPS coordinates are converted to
Earth Centered Earth Fixed (ECEF) coordinate system or Universal Transverse
Mercator (UTM) coordinate system to use in 3D applications. I have decided to use the
UTM coordinate system, as it utilizes a conformal projection of the global map onto a
planar surface by dividing the surface into local projections called "grid zones". Unlike
ECEF, the UTM doesn’t involve spherical mapping and the transformation between the
SLAM world coordinate system and UTM can be easily defined. The advantage of the
UTM coordinate system is that the distances and angles can be calculated using
Euclidean geometry over short distances and the distance units are in meters, which
makes it intuitive to interpret.

The current state of the art visual SLAM systems [11][26][25] can accurately map
and localize the camera using local sensors (like - camera or IMU) while global sensors
(like - GNSS or magnetometer) can provide locally noisy but globally drift-free positions.
The complementary nature of these sensors makes it ideal for them to be combined, to
correct for the uncertainty of the other sensor. Fusing the measurements from these
sensors can help in achieving geo-referenced 6 DOF (degree of freedom) pose estimation.
Although, the conventional filter-based methods can fuse the local estimates into the
global pose graph required for the convergence, but is not ideal for performance when
compared to graph-based BA. The cost of BA is linear in N , whereas the cost of filtering
is cubic [41], owing to the fact uncertainties are explicitly represented in filtering-based
methods. For filtering-based method in SLAM, the computational cost of propagating
joint distributions scales poorly with the number of variables involved during optimization,
and the number of features in the map will be severely limited. Whereas the graph-based
method retains poses to be in a sliding window of the most recent camera positions,
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which are a set of intelligently or heuristically chosen keyframes. The graph optimization
remains relatively efficient, even if the number of features in the graph and measurements
from the keyframes is very high. That is why graph-based methods are preferred over
filter-based method for this type of optimization tasks.

For visual SLAM, I have used OpenVSLAM project, developed by Shinya Sumikura et.
al. in 2019 [5]. OpenVSLAM project provides a visual SLAM framework that builds on top
of the existing state of the art systems used in SLAM, like - using ORB (Oriented FAST and
Rotated BRIEF) [6] for feature detection and tracking; DBoW2 (Dynamic Bag of Words)
[42] for indexing and converting the images into a bag-of-word representation; G2O
(General Graph Optimization) [43] for optimizing graph-based nonlinear error functions.
Figure 3.1 shows the OpenVSLAM architecture with all the functional blocks included in
three threads of tracking, mapping and global optimization that run in parallel.

Figure 3.1: OpenVSLAM architecture. image credit: [5]
There are three different stages of optimization for the global convergence of the

system. The first optimization is done, at the frame level in the tracking thread (referred
to as the pose optimization in Fig 3.1). The camera pose optimization matches the
current frame with the previous frame and optimizes the pose using motion only bundle
adjustment (BA). The second stage of optimization is done in the local BA step under the
mapping module. This optimization is done, over the connected neighbouring keyframes
that have shared landmarks in the field of view. The new correspondences for unmatched
ORB in current keyframe are searched in the neighbouring keyframes from the covisibility
graph to triangulate new map points. This step achieves an optimal reconstruction of
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the environment and camera poses using the local BA. The optimization of local bundle
adjustment is contained within the SE(3) group, and hence the camera pose is restricted
to 6 DOF (Rotation and Translation). The third optimization is the global BA step under
the global optimization module. The global bundle adjustment is used when a loop
closure is detected in the new keyframe. A similarity transform SIM(3) is calculated to
estimate the accumulated drift of the system.

Sim(3) =

{sR T

0 1

with R ∈ SO(3), T ∈ IR3, s ∈ IR+} (3.1)

Compared to local BA the global BA is optimized in 7 DOF (Rotation, Translation and
scale). This results in a drift aware and scaled global optimization of the graph in the
VSLAM system.

Figure 3.2: Modified VSLAM system architecture

For a standalone VSLAM system, the loop closing is an important step to correct for
the accumulated drift over time. However, it’s not useful in case of a real-time application
that doesn’t necessarily involve moving in a closed path. In our case, it is assumed that
the mobile user may arbitrarily walk and not necessarily revisit the same place again.
Thus I have replaced the global bundle adjustment step containing the loop closure test
with the global GNSS bundle adjustment process (see figure 3.2). The global GNSS BA
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is called every time after the addition of a fixed number of keyframes (30 keyframes in
our case) to the global map. The GNSS measurements are used to complement the
systems drift and scale the global map accordingly.

In the current design, the complete system includes a GNSS receiver installed on-
board the android device, Logitech C920 webcam and a windows laptop with i7 2.6 GHz
(8 core CPU). The android device is connected with the PC via a USB cable, and a
socket-based TCP connection is established between the android application and SLAM
system on the PC. The Android application handles the processing of the ephemeris
data and support for satellite constellations, and the GNSS measurements are sent over
the socket connection to the client application. This system design was opted to be
inline with the larger goal of testing the solution on mobile. Most of the current mobile
phones that supports AR framework are already equipped with a high-resolution camera
and GNSS receiver with onboard computation power equivalent to 2+ GHz octa-core
processors.
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4. IMPLEMENTATION

This chapter explains about the implementation of the core systems and presents the
formulation of the problem.

I. TIGHTLY COUPLED GNSS AND VISUAL SLAM SYSTEM

For a tightly coupled GNSS-VSLAM system, the carrier phase or pseudo-range
measurement is directly fused with the visual information. In the tightly coupled system,
even if only one satellite is tracked the system can still make use of the GNSS
information [44]. While in a loosely coupled system, the position calculated by the GNSS
receiver is fused externally with visual measurements as proposed in [36] and [37]. The
tightly coupled system make sense in our case for two reasons - first to get a globally
drift free localization without using the loop closure; and second, it doesn’t require
additional processing step for the fusion and optimization, thus saving on performance.

Figure 4.1: GNSS measurement in global pose-graph structure

The most of the visual SLAM process is same as implemented in OpenVSLAM [5] and
is already discussed briefly in the introduction. The major change from regular VSLAM is
the global GNSS bundle adjustment step under the global optimization module, instead
of global bundle adjustment 3.2. The GNSS BA has two main jobs - first to estimate
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and scale the map if necessary, and second to optimize the global reprojection error
with the GNSS measurement as a prior unitary edge of the graph. Figure 4.1 shows the
abstract representation of GNSS fused global pose graph structure in the global GNSS
BA. The keyframes and the local connectivity of the graph is estimated from the local BA
and stored in the local map database with the covisibility graph. This connectivity and
landmark points are collectively represented by the orange square. The blue spheres
represent the sensor state, that contains the estimated pose (translation and rotation) of
the sensor in the SLAM world coordinate system. Each edge of the graph has the cost
function and constraints the relative pose from one node to another.

The first concern in the fusion of GNSS measurement is the low frequency updates
(≈ 1Hz), while the VSLAM system runs at roughly 10 frames per second (in case of
OpenVSlam). To get the GNSS measurement for every frame, I have used a linear
interpolation of the measured GNSS position. Thus to estimate GNSS position at time t
for the received measurement at time t1 and t2, we can linearly interpolate as follows

δt = t2 − t1,

δg = Gt2 −Gt1,

Gt = Gt1 +
(t− t1)

δt
δg

(4.1)

here Gti represents the GNSS measurement at timestamp ti where t1 <= ti <= t2.
The global pose graph optimization is a Maximum Likelihood Estimation (MLE)

problem, which consists of the joint probability distribution of sensor poses. This
problem can be formulated as follows - given a good initial estimate of sensor poses
χ = {k0, k1, ..., kn}, where ki = {piw, qiw} and piw, qiw denotes the position and rotation
under the SLAM world. With the assumption that all the measurement probabilities are
independent, the problem can be derived as following

χ̂ = argmax
χ

n∏
t=0

∏
k∈S

p(zkt |χ), (4.2)

where S is the set of measurements including the local factors and GNSS measurements.
The uncertainty of measurements are assumed to be Gaussian Distribution with mean
and covariance, that is p(ztk|χ) ≈ N(ẑt

k,Ωtk). Thus the equation 4.2 can be derived
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further as follows
χ̂ = argmax

χ

n∏
t=0

∏
k∈S

exp(−1

2
||zkt − hkt (χ)||2Ωk

t
),

= argmax
χ

n∑
t=0

∑
k∈S
||zkt − hkt (χ)||2Ωk

t

(4.3)

where ||zkt − hkt (χ)||2Ωk
t
is the Mahalanobis norm and converts the state estimation to a

non-linear least squares problem. This is solved using graph-based bundle adjustment
process.

The UTM coordinate can be represented by a 3D vector for Easting, Northing and
Altitude of the system. Here, the system position is defined relative to the starting point,
i.e. the first UTM coordinate is fixed as the origin point. Thus, the relative position and
error function is defined as follows:

PGNSSt = UGNSSt − UGNSS0

zGNSSt − hGNSSt (χ) = zGNSSt − hGNSSt (xt)
(4.4)

here, UGNSS is the recorded measurement and hGNSSt (xt) is the transformed GNSS
position vector in SLAM world coordinates. The GNSS measurements directly constrain
the camera pose of every node, and the covariance is set from the accumulated delta
range uncertainty (in meters) received from the GNSS sensor. The range uncertainty
is inversely proportional to the number of active satellites. Larger the number of visible
satellites, smaller is the covariance.

Once the pose graph is constructed, the Levenberg-Marquardt algorithm is used in
an iterative way to optimize the graph. The goal of the optimization is to estimate the
best node configuration that minimizes the cost function and matches the graph edges
as much as possible.

After the optimization, we can transform the estimated camera poses from VSLAM
world to GNSS coordinate system. This way we can get the geo-referenced positioning
of the camera from the VSLAM system. We can use a large number of keyframes for the
global pose graph optimization to get an accurate estimation, however, the computation
complexity increases with the large number of keyframes. Thus here I have maintained
a sufficiently large window for optimization and discard the old poses and measurements
from global bundle adjustment. I have used the last 100 keyframes from the global map
for global pose-graph optimization.
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An important step before the global GNSS BA is the scaling of the global map. The
test for map scale is done after a fixed number of keyframes have been added to the
map database. This limit is set to 25 keyframes in this project. The above-mentioned
pose graph optimization is constrained within the SE(3) space with 6 DOF (position and
rotation). To fix the scale ambiguity, we need to estimate the map scale from external
sensor measurements, which in this case is GNSS data. The code snippet: 8.2 provides
the algorithm used for the estimation of scale factor from the "gps_pos" and "cam_pos"
list for all the keyframes used in current global optimization.
Listing 4.1: Estimation of scale factor for global map

Vec3_t mean_gps;

Vec3_t mean_cam;

mean_of_eigen_vec(gps_pos, mean_gps);

mean_of_eigen_vec(cam_pos, mean_cam);

double sum_gps_diff = 0.0;

double sum_cam_diff = 0.0;

for (size_t i = 0; i < gps_pos.size(); ++i) {

sum_gps_diff += (gps_pos[i] - mean_gps).squaredNorm();

sum_cam_diff += (cam_pos[i] - mean_cam).squaredNorm();

}

const double scale = std::sqrt(sum_gps_diff / sum_cam_diff);

The estimated scale factor is used to uniformly scale the global map by multiplying it
with all the keyframe and map points from the global map database.
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II. COORDINATE SYSTEMS AND INITIALIZATION

Figure 4.2: Different coordinate systems in the GNSS-VSLAM system

In the combined GNSS and VSLAM system there are 3 different coordinate systems in
place (see figure 4.2). In order to get the geo-referenced position using VSLAM, we need
to estimate the transformation between the VSLAM coordinate systems and the UTM
coordinate system. The first is the UTM coordinate system, which is defined for the GNSS
receiver and is obtained by converting GNSS measurements to UTM coordinates. The
second coordinate system is the VSLAM world coordinate system, which is defined for
the first frame of the image sequence that is used to initialize the tracking of the VSLAM
system. The third coordinate system is defined for the individual/continuous frames of
the VSLAM system. From figure 4.2, R_wgnss represents the rotational transformation
from UTM to VSLAM world coordinate system; T_wgnss represents the transformed
GNSS measurement into SLAM world coordinate; and pose_cw represents the estimated
camera pose in the VSLAM world.

The VSLAMworld and frame coordinate systems have the same scaling and they differ
only in their orientation. The UTM coordinate system has both the different orientation
and scale compared to the other two coordinate systems. The VSLAM world coordinate
system has its origin at the first tracked frame (represented by the yellow frame in Fig
4.2). This frame remains fixed throughout the process and never gets deleted or changed
during the execution. The VSLAM frame coordinate system is defined for the current
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camera pose and changes with every new frame update. The keyframe poses are always
defined in SLAM world coordinate system.

The UTM Easting and Northing measurements from the sensors are mapped to the
X and Z values, while the Y-axis is used for representing the height. In the VSLAM
world coordinate system, the horizontal movement of the camera is restricted to the
XZ-plane, while the vertical movement of the camera is represented on the Y-axis. This
commonality between the two coordinate system leads to the hypothesis that the linear
transformation can be represented by a 3x3 rotation matrix (R_wgnss) along the Y-axis.
As the VSLAM frame coordinate system changes with every new frame, we cannot
determine the rotation matrix that describes the general transformation from the GNSS
coordinate system to the VSLAM coordinate system. Therefore it only makes sense
to have calculated the rotation matrix from the GNSS to the VSLAM world coordinate
system. These coordinate systems are fixed, and the resulting rotation matrix can be
consistently used for transformation.

The rotational transformation between the two coordinate systems is estimated from
two direction vectors representing the sensor position in their local coordinate systems.
Once we have enough confidence in the locally estimated direction, we can calculate
the rotation matrix between the two coordinate systems that represents the required
transformation. Detailed code snippet is included in Appendices 8.1. As the GNSS
measurement is susceptible to noise, this initialization step becomes slightly complicated.
During the testing, I have constraint the initialization of the GNSS position based on
either of following two conditions- (a) either the movement distance is greater than 15
meters (calculated from GNSS positions); (b) at least 30 keyframes have been added to
the global map. This rotational transformation is estimated during the GNSS initialization
stage, and no global GNSS BA optimization is done without this initialization. Once the
transformation is estimated, all the previous GNSS measurements are aligned for the
keyframes stored in the global map. The previous GNSS measurement (Tgnss) can be
converted to SLAM world (Twgnss) as following

Twgnss = RwgnssT gnss,

T gnss = R−1
wgnssposewc

(4.5)

here posewc represents the camera position in SLAM world and
R−1
wgnss = Rwgnss.transpose() as Rwgnss ∈ SO(3) group.
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Once we have estimated the transformation between the GNSS and VSLAM
coordinate system, we can update the previously set GNSS-position of keyframes in the
map database. It ensures that we have a consistent GNSS measurements during the
global pose-graph optimization after the initialization step.
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5. TESTING

Two systems are created for testing the tightly coupled GNSS VSLAM - online system
and offline system. The online system uses a connected live camera and a GNSS
server. The received GNSS data from the android device is fed directly into the VSLAM
system. The offline system runs with the pre-recorded video data and timestamped
GNSS measurement text, stored locally on device.

Two tests were planned, for testing of stability and the accuracy of the GNSS-VSLAM
system. The first test is for the correction of noisy GNSS measurement of camera
trajectory. As the GNSS measurement is assumed to be a Gaussian distribution with the
standard deviation of averaged position error of 9.71 m [45], it cannot be directly used
for precise localization of the user. The second test is for the estimation of scale factor
for the GNSS-VSLAM system. This test will measure the accuracy of similarity between
the physical world and the virtual VSLAM coordinate system of the global map.

To test the GNSS fused VSLAM system, I have captured the video sequence of the
environment from my calibrated Logitech C920 web-camera and synchronously recorded
the corresponding live GNSS measurements with timestamps. The system’s timestamps
was saved for every new record. This saved data is then used in offline system, and
subsequent results are recorded and presented in the next section. Similarly, for the
online system, the complete setup of a laptop with a webcam and a paired android device
was carried on the streets, and subsequent input and output records are serialized to
the file for evaluation.

Since I have used the low-cost GNSS receiver and mobile system, it’s hard to get
the ground truth data. For the test of camera trajectory and noise correction of GNSS
measurement using VSLAM, we can do a qualitative analysis by manually plotting the
estimated positions over the 2D map. We can visually compare the input and output
graph plot for smoothness of the traversed trajectory for the camera. For the evaluation
of scale factor estimate, we can do the quantitative test by calculating the absolute
distance between the starting and ending point of the travelled trajectory and compare
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this distance in meters for input GNSS measurement and estimated sensor position in
GNSS-VSLAM system. I have used Google map to get the ground-truth value for starting
and ending location.

Figure 5.1, presents the screenshot of the android server application for GNSS
measurement running on a mobile device.

(a) home page with constellation and GNSSestimate information (b) GNSS measurement position error plot,while standing still before the start of testing
Figure 5.1: Android GNSS server application

From figure 5.1b, we can observe that the receiver has a maximum positional error
of approx. 50m in the North (z-axis) and approx. 30m in the East (x-axis). Such high
variance would increase the chances of poor initialization of rotational transformation and
is not ideal for a stable GNSS-VSLAM system. And since no global bundle adjustment is
done before the initialization, it would also adversely affect the scale factor estimation
immediately after the initialization step.
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6. RESULTS

This section presents the qualitative and quantitative analysis of the GNSS-VSLAM
system for noise correction and scale estimation respectively.

(a) input GPS plot for real-time GNSS-VSLAMsystem (b) output GPS plot for estimated cameraposition in real-time GNSS-VSLAM system

(c) input GPS plot for offline GNSS-VSLAMsystem
(d) output GPS plot for estimated cameraposition from the recorded video sequencein offline GNSS-VSLAM system

Figure 6.1: Graph plot of input (blue line) and output (yellow line) camera trajectory inUTM coordinates relative to starting point

Figure 6.1, presents the graph plot of the input and output GPS trajectory for the
GNSS-VSLAM system. The visual observation of the graph shows that the estimated
camera trajectory in the output is much more smoother and continuous compared to the
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input GPS positions. From input graph 6.1a, we can observe how the bundle adjustment
process has smoothed out the outlier input observation resulting in smoother output
path in graph 6.1b. In case of offline testing, the recorded GPS measurements are
relatively smooth in graph 6.1c, but it still contains slight bumps and measurement
inconsistencies, which are smoothed out in output graph 6.1d.

For the quantitative test of scale, we got the following results during the online and
offline testing of the GNSS-VSLAM system.

Starting GPS (lat,lon) Ending GPS (lat,lon) Distance[meters]
Input 51.528391, -0.126144 51.527671, -0.126782 91.42Output 51.528395, -0.126134 51.527313, -0.127742 163.86Groundtruth 51.528395, -0.126134 51.527870, -0.127332 101.37

Table 6.1: Input, output and ground truth GPS coordinates in offline testing

Starting GPS (lat,lon) Ending GPS (lat,lon) Distance[meters]
Input 51.527960, -0.126910 51.528494, -0.125741 100.33Output 51.527964, -0.126941 51.528168, -0.126438 41.54Groundtruth 51.528046, -0.127030 51.528377, -0.126160 70.55

Table 6.2: Input, output and ground truth GPS coordinates in online testing

Table 6.1, shows that the GNSS-VSLAM system overly estimate the world scale, while
from Table 6.2, we observer that the scale factor is underestimated. In my understanding
following two factors are responsible for this

• The GNSS VSLAM initialization step. The estimation of rotation transformation
between GNSS coordinate and VSLAM world coordinate system is highly prone to
the noise factor in GNSS measurement.

• The estimation of the scale factor is based on the fact that the GNSSmeasurements
are assumed to be normally distributed (Gaussian). However, that is not true
especially in case of a moving robot [46].

In the current estimation of rotational transformation, the system depends upon the
sensor distance (of 15m) and the number of keyframes (at least 30) to estimate the
GNSS direction vector. The position vector is calculated by subtracting the current
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GNSS measurement from the starting GNSS measurement (Appendices 8.1). While
theoretically, it is correct but in practice, it almost always results in some amount of
angular offset between the alignment of the SLAM world coordinate system to GNSS
world coordinate System. Figure 6.2 shows the transformed GNSS positions plot in the
3D SLAM world. While there doesn’t exist any elegant solution to automatically address
this problem (to my knowledge), this can be fixed by adopting the manual alignment
process. Like, placing fiduciary markers in the physical world or to manually define the
rotational transformation during the process.

Figure 6.2: Scaled GNSS-VSLAM system. The red dots represent local map featurepoint and white dots for global map points; The transformed GNSSmeasurements are represented in orange; The camera’s trajectory isrepresented in thin blue line.

The incorrect estimation of the scale factor during the global GNSS bundle adjustment
process also results in poor localization of the robot over the large distance or for a longer
period of time. This severely affects the tracking of the VSLAM system and results in
losing track of the map after a certain amount of time. In my testing, I have found that
current GNSS-VSLAM system loses track after moving roughly a distance of 100 meters.
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7. CONCLUSION

In this project, I have investigated on directly fusing the GNSS measurements into
visual simultaneous localization and mapping process. The necessity for this research
is motivated by the requirement of creating the large scale outdoor Augmented Reality
experience. The current state of the art VSLAM systems use multi-sensory fusion with
monocular sensors to estimate the position of the robot and the locally accurate map
scale. However, no previous work exists in the public domain, that uses just the GNSS
measurement and the VSLAM for a geo-referenced localization of the robot. As such
in this research, I have attempted to address this problem and propose my preliminary
work and results.

The key contribution of this project includes - an android application that can stream
RAW GNSS measurements over a TCP-based socket connection. The current
GNSS-VSLAM system is inefficient but provides a possible approach for the automatic
estimation of transformation between the GNSS world coordinate system and VSLAM
world coordinate systems. The estimation of map scale with monocular visual SLAM
without using the loop closure, and a new graph-based global bundle adjustment
process for the optimization of GNSS measurements and camera poses.

From the test results, we can conclude that the current GNSS-VSLAM system is very
brittle and susceptible to the noise in GNSS measurements which affects the initialization
process of the system. This adversely affects the tracking of the GNSS-VSLAM over a
large distance and may even lose track in the worst case. Some other constraints or
challenges of the project are as follows

• The initialization of rotational transformation between the GNSS world and VSLAM
world is only valid until the current tracking session is active. So if we reset the
map or start a new one, it needs to be re-initialized.

• High computation and multi-threaded processing. While the current system works
smoothly on a laptop (with an update rate of approx. 10 Hz), it would not be ideal
for it to be deployed on a mobile platform for real-time AR experience.
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For future work, I plan to use the re-localization based methods to estimates the
cameras 6 DOF poses and delegate the heavy computation of maintenance of the global
map and localization to a networked system. The pose estimation, the optimization of
the global map, and multiple bundle adjustment are essential for the task of VSLAM.
However, this task is computationally heavy and non-linear to be carried, on an edge
mobile device. Some of the recent works such as Robust Hierarchical localization at
large scale by Paul-Eduardo Sarlin et al. [47] and ORB-SLAM3 by Carlos Campos
et al. [48] looks very promising for the field of visual SLAM. The HF-net proposed by
Paul-Eduardo Sarlin et al. can compute the keypoints as well as global and local feature
descriptors in a single shot, and localize the system with great accuracy (less than 0.5m
with 80% recall rate) for real-time application (approx. 20 FPS). The ORB-SLAM3 system
supports visual-inertial SLAM which is robust and 2 to 5 times more accurate than it’s
predecessors, along with multiple map SLAM, which allows to gradually merge two maps
upon losing track.
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8. APPENDICES

This chapter includes list of all the code snippets, applications used, and the user
manual for testing them. All the project source codes and test data is made public either
on github or shared via link with this report.

I. GNSS SERVER APPLICATION

The complete source code for the project can be found at: https://github.com/nfynt/
GNSS_Compare/tree/socket_conn

To run the server install the apk as usual and from the applications menu select
start/stop the GNSS server 8.1.

Figure 8.1: Start/stop GNSS server

By default the applications uses port 50000 for configuring TCP server and waits for
inbound connection to stream the RAW data. To access this RAW data on a PC, connect
the android device via a USB connection and use following steps:

• Obtain the ADB and install on the PC. This can be obtained from the Android SDK
or in stand-alone packages.
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• Ensure the USB drivers for your mobile are installed on the PC.
• Ensure that USB debugging is enabled on the mobile device.
• Ensure the ADB can detect your mobile by running the following command:
adb devices

• Use ADB to forward mobile tcp port (50000 in this case) to PC tcp port (20175 in
this case). Use command:
adb forward tcp:20175 tcp:50000

Test the RAW values from terminal on PC using Netcat or any other TCP/IP client.

II. VISUAL SLAM AND UTILITY APPLICATIONS

The complete source code for the project can be found at: https://github.com/nfynt/
openvslam_gps_fusion/tree/develop

II.1. Camera calibration

Before running the main application we need to have the YAML configuration file
containing the camera parameters. To calibrate any monocular camera, use the
following utility application:

Figure 8.2: camera calibration utility

II.2. Recording Video and GNSS measurement

In order to record the video and RAW GNSS measurement to be used for offline, you
can use the following utility application:
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Figure 8.3: record GNSS and video

Alternatively, you can also use any other recorded video and RAW GNSS file, given
the format of text file containing the measurements is in following order and csv format:
timestamp, latitude, longitude, altitude, sensor speed, measurement accuracy, satellite
count, multipath indicator, accumulated delta range uncertainty in meters, constellation
type
II.3. Offline GNSS-VSLAM system

The offline GNSS-VSLAM system requires a video file from the calibrated camera and
recorded text file with GNSS RAW measurement.

Figure 8.4: offline GNSS-VSLAM system

II.4. Online GNSS-VSLAM system

The online GNSS-VSLAM system runs in real-time using available camera and connected
android device.
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Figure 8.5: Online GNSS-VSLAM system

III. CODE SNIPPETS

III.1. Rotational transformation

Listing 8.1: Rotational transformation matrix between GNSS and VSLAM coordinate
system

//Estimate the camera position in SLAM world cs by inverse

↪→ tranformation

Eigen::Vector3d w_pos = -camera_pose.block(0, 0, 3, 3).transpose() *

↪→ camera_pose.block(0, 3, 3, 1);

w_pos(1, 0) = 0; //ignore y position: assumed to be in same direction

↪→ as UTM alt

Eigen::Vector3d gnss_pos = gps_parser::get_direction_vector(*start_geo

↪→ , *curr_geo);

std::cout << "\nCamera pos " << w_pos.transpose()

<< "\nGPS pos " << gnss_pos.transpose() << std::endl;

//Normalize the world and gps direction vector

w_pos.normalize();

gnss_pos.normalize();
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spdlog::info("Coordinate Basis\nWorld: {}\nGPS {}", w_pos.transpose(),

↪→ gnss_pos.transpose());

//Estimate the rotation matrix to transform from gnss_pos to w_pos

Eigen::Vector3d rotation_axis = gnss_pos.cross(w_pos);

rotation_axis.normalize();

double angle = std::acos(gnss_pos.dot(w_pos));

// degenrate case when vector a and b point’s in opposite direction

if (cos(angle) == -1) {

spdlog::info("degenerate transformation case, will retry");

continue;

}

Eigen::Quaternion<double> t_quat(Eigen::AngleAxisd(angle,

↪→ rotation_axis));

t_quat.normalize();

R_wgnss = t_quat.toRotationMatrix();

std::cout << "Rotation matrix (gnss->slam_w)\n" << R_wgnss

<< "\n rotation angle: " << angle << "\n";

III.2. Estimation of map scale

Listing 8.2: Estimation of scale factor for global map
Vec3_t mean_gps;

Vec3_t mean_cam;

mean_of_eigen_vec(gps_pos, mean_gps);

mean_of_eigen_vec(cam_pos, mean_cam);

double sum_gps_diff = 0.0;

double sum_cam_diff = 0.0;

for (size_t i = 0; i < gps_pos.size(); ++i) {

sum_gps_diff += (gps_pos[i] - mean_gps).squaredNorm();

46



sum_cam_diff += (cam_pos[i] - mean_cam).squaredNorm();

}

const double scale = std::sqrt(sum_gps_diff / sum_cam_diff);
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